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ABSTRACT

The classification and construction of open-channel projection operators for a given
rearrangement collision are developed from the unifying viewpoint of their projective
spaces in the total Hilbert space of the system. The representative case of the pickup or
stripping process is treated. The open-channel projection operators are constructed
from the channel-subspace projectors with the help of generalized channel transformation
functions. Various projection operators that can be obtained in closed form are identi-
fied. The use of the projection operators to obtain coupled equations describing the
reaction is discussed, including their application to generalized potential models.
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COUPLED-CHANNELS METHOD FOR
REARRANGEMENT COLLISIONS
by Howard C. Volkin

Lewis Research Center

SUMMARY

As shown by Feshbach, coupled-channel equations that describe a reaction can be
obtained by means of an open-channel projection operator. For a given rearrangement
collision, the classification and construction of such operators are developed herein from
the unifying viewpoint of their projective spaces, which are subspaces of the total Hilbert
space of the system. The open-channel projection operators are not unique, but the
practical limitations on their choice are made clear when their construction is viewed in
terms of the fundamental channel subspaces that arise naturally in the problem. The
projectors for the channel subspaces are the basic ones from which the open-channel
projectors are constructed. Generalized channel transformation functions supply all the
information needed for this purpose. The representative case of the pickup or stripping
process is treated. The various possible projection operators that can be obtained in
closed form are identified for the two-channel case; these include those given by Feshbach
and by Chen and Mittleman, as well as new ones suggested by the methods presented
herein. In all cases, the extension to the multichannel case is shown to follow easily.
The use of projection operators to obtain the coupled equations is discussed, including
their application to generalized potential models. The appropriate boundary conditions

are also given in each case,

INTRODUCTION

Rearrangement collisions have received considerable study in the last few years.
Within the framework of his general reaction theory, Feshbach (ref. 1) has shown how
any reaction can be described exactly by a system of Schrodinger -type equations. The
equations couple together various functions, each of which yields the asymptotic behavior
of the wave function in its associated channel (or group of channels). The set of coupled



equations is obtained from an open-channel projection operator P, in terms of which
Feshbach's unified reaction theory is formulated. The projection operator P that

selects the open channels is not unique. When this method is applied to reactions involving
simple incident and target particles (e.g., electrons (positrons) on light atoms) or to
more complicated target systems described by generalized potential models, it leads to

a system of integrodifferential equations whose accurate numerical solution is within the
capacity of a large, high-speed computer.

For inelastic scattering, the coupled-channels method has proved to be useful, and
is developed naturally from the unique expansion of the scattering state in the set of
orthogonal states of the target system. By the simple projecting out of the open-channel
components of the expansion, a system of coupled equations for these components is
obtained. In rearrangement collisions, however, the final noninteracting states in the
rearrangement channels are not orthogonal to those in the direct channels, and there is
more arbitrariness in the choice of a projection operator. In a given problem, any suit-
able projection operator will yield a set of coupled equations that is formally exact. A
projector whose coupled equations have a form convenient for applied computations is
desired. Such projectors exist and can be expressed in a closed form. They offer a
practical way of treating rearrangement collisions that is free of the approximations com-
monly used heretofore in such problems.

Among the explicit projectors given by Feshbach (ref. 1) to illustrate various facets
of his theory is one applicable to the case of pickup or stripping reactions. The assoc-
iated coupled equations are also discussed. Mittleman (ref. 2) has given another projec-
tion operator for this reaction, one designed to yield coupled equations that are easier to
apply than those of Feshbach. Discussions relevent to Mittleman's projector are pre-
sented in papers by Coz (ref. 3) and Hahn (ref. 4). Mittleman's first result was some-
what disappointing, however, inasmuch as an auxiliary integral equation problem must
be solved to obtain the explicit expression for his projector. Recently, Chen and
Mittleman (refs. 5and 6) have shown how to circumvent the difficulties in constructing
projectors of this type.

Herein, the treatment of projection operators for rearrangement collisions is formu-
lated rather differently from any given previously. Basically, the problem is viewed in
terms of the subspaces (in the total Hilbert space of the system) that arise naturally from
the various sets of internal states occupied by the channel fragments. These channel
subspaces provide the fundamental projectors. For every pair of open channels, where
the fragments of one channel involve a rearrangement of the others fragments, a general
transformation function is defined. This transformation function is the scalar product
between two state vectors of the total system. The function contains not only the overlap
integral of the fragments' internal states, but also the required kinematic connection
between the coordinates describing the relative motion of the fragments in the different



types of channels. The transformation functions contain all the information needed to
construct the open-channel projection operators.

The description in terms of the channel subspaces, besides furnishing a basis for the
construction of projection operators, reveals the relations between the various projectors
that have already been proposed, suggests new ones, and shows the limitations on their
possible types. In a previous work (ref. 7), a general class of open-channel projection
operators for any given reaction was described. This class, which may well include
most of the useful ones for computational applications, consists of every projector whose
projective space contains, in its entirety, the channel subspace of every open channel.
Projection operators of the type given by Mittleman and by Feshbach can be characterized
as having certain minimal and maximal projective spaces, respectively, in the class.

In the succeeding sections of this report, the general formalism is explained, and
certain transformation functions are discussed. The methods are illustrated by a simple
example (the two-channel projector first given by Mittleman), various two-channel pro-
jectors that can be obtained in closed form are constructed, and the generalizations to the
multichannel case are shown to follow easily. Finally, the asymptotic properties that
provide the boundary conditions for the coupled equations are given, followed by brief
discussions of the equations themselves.

BASIC THEORY AND FORMALISM
Channel Subspaces

The various channel projection operators that occur in a given rearrangement col-
lision are developed from the unifying viewpoint of their projective subspaces in the full
Hilbert space of the problem. The pickup (or stripping) reaction serves as the typical
rearrangement process in the considerations. For simplicity, it is assumed that only
two types of channels are open. In addition, recoil effects and the effects of identity are
neglected. Thus, the target is taken to be infinitely massive and all particles are treated
as distinguishable. The notation used herein (see the appendix) is based on that of refer-
ence 7, which may be consulted for further details. Although the notation appears some-
what cumbersome, it has the advantage of exhibiting explicitly the variables that are
employed at any given point and generalizes directly to more types of open channels or to
other kinds of reactions.

The symbols (#-1), o, and 2, respectively, are for the heavy core nucleus, the
nucleus consisting of particle p bound to the core, and the bound system of particles
n and p. With position vectors measured relative to the fixed center of (#-1), let ;0
and r1 specify the positions of n and p, respectively. The set of variables for i_:.l.le
particles that constitute the core nucleus are represented simply as g = (rz, R o A).



The center of mass of 2 is at R = (1/2)(r0 + rl) when the masses of n and p are
equal. The internal motion is a function of T = rO - r1 Chanmnel om consists of par-
ticle n and nucleus &, where & is in the mth excited state with wave function
¢ (;1, 7.;:) Channel fAn consists of the fragments £ and (#-1) in the states of internal
motion given by the wave functions X3 (T) and gb (%), respectively. The index n spec-
ifies the pair (i,j) and is ordered toward 1ncreas1ng values of the total internal energy
of the fragments. The notation (Xl,l/)n is usually written for xizpj.

Consider now the scattering state ¥ for the pickup reaction. Large separations of
the particles in the a channels correspond to large values of Ty while r, = Ry, 1= 1,
2 . »%; correspondingly, in the B channels, R becomes large, while r fRD,

RA pi1=2 .,%. Here, R, is some effective radius of the nucleus ¢, and so
on ¥ the energy is such that there are M° + 1 open ¢« channels and N° +1 open S
channels, then the asymptotic behavior of the wave function is shown as follows:

,--

M° - -
- - = - - ik,-r -~ o~ ik_r
(Tg Ty £W) 5 (232 Z qu(rl,g)[ﬁmoe 0 °+Aam(k0,r0)rie m 0}
0
- = = -3/2 - 1 if{ R
&% Ew 5 en Z [XEW®], Agnlig R 2o 2)

The wave vector -1;0 specifies the incident plane wave in channel «0, and km and Kp
are the wave numbers for the relative motion of the free fragments in the channels «om
and fn, respectively. The transition amplitude for channel fn is A Bn(ﬁ o’ ﬁ), and so
forth.

The full scalar product of the Hilbert space is formed by 1ntegrat10n over a complete
set of part1cle coordinates. Any two of the coordinates ro, rl, r and R along with the
coordinates z} for the core particles can be members of a complete set. Coordinates
other than position vectors will not be indicated explicitly. If the palr (ro, 1) is used,
the volume element for the scalar product integral is d7 = dr, 0 dr dg The Jacobian of
the transformation from the pair (ro, rl) to the pair (R T) has the value (-1). Accord-
ingly, the volume element can also be written as d7 = dR a7 dg, and the coordinate basis
vectors can be taken to satisfy the relation Iro, ry, g) = IR T, g) The pair of coordin-
ates (ro, 1) may be called the '"natural pair'' for the o channels. The variable r1
is the convenient internal coordinate for the nucleus ., The uniform motion of the frag-
ments when their separation becomes sufficiently large that they no longer interact is
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expressed most simply in terms of ?0, the relative separation between their mass
centers. Consequently, the wave function representative (eq. (1)), based on the choice
(FO, T. 1), attains asymptotically in the @ channels the form of an eigenstate of the nonin-
teracting Hamiltonian for the a channels. For the B channels, the asymptotic form
(eq. (2)) shows that the pair (ﬁ, F) is the natural one. The formalism is first developed
in terms of the natural pairs of channel coordinates. When it becomes necessary to use
other coordinate pairs, only slight extensions of the formalism are required.

Let & om be the subspace of the total Hilbert space that is spanned by all states of
the form

'|p¢m> = fd?bp(f'b)lf’b, D)

where p(;o) represents any state of motion for the mass centers of the « fragments,
that is, for particle n relative to nucleus &, Parentheses are used to indicate a scalar
product taken over a set of variables that is not a complete set for the total system; thus,
p(;0)¢m(F1’ E) = (?O,'fl, Elpgbm) = (folp)(x"’l, Z| ¢,,)- The projection on the subspace
ﬁam is given by the operator

Tym = 1rol(pm)(quI )

Do = Jf |Th 6) &%y (T b @)

The closure integral over the coordinate T 0 in equation (4) represents the unit operator
1r in the space of all states p of relative motion, which is called the ?0 space. R
Sirgilarly, let 5Bn be the subspace spanned by states of the form o(xzp)n, where o(R)
represents any state of relative motion for the particles 2 and (#/-1) of the B chan-

nels. The projector for ﬁBn is

Mg, = 1g D] ) (xw ], |

= IR, [xwy) dR(RY, (x| (5)

The scattering state ¥ can be expanded in terms of the complete set- dm (which
includes states belonging to the continuum spectra of ). The mth term in the expan-

sion, namely II am‘I’ = Um¢>m, where Um is represented by



U @) = (For 0 |9 = S 0 * @, BIUG, T, F) oFy oF (©)

gives the asymptotic behavior in the channel am, Thus, for large values of T Um (FO)
becomes equal to the mth coefficient in equation (1), if am is an open channel, or
vanishes if the channel is closed. In the same way, the asymptotic behavior in channel
Bn is given by HBn\II = Vn(x"l/)n’ where Vn(ﬁ) = (R, (xa,l/)nl\lr) .

Any two channel subspaces & om and ‘5am' are orthogonal, if m + m', simply
because (qu , q,')m,) = 0. Let A denote any selected set of « channels and B denote
any selected set of § channels. Then, the channel subspaces of the set A together span
a subspace 6, which is the direct sum

tﬁA =Jjam ®'ﬁam, e. . .63*5am,, m,m',, ., .,m'" CA

and has the projection operator

U= ) Mo,

mCA

Ioym%om = 'mm'Mam

The same considerations apply to the channel subspaces 5Bn. The overlap integral

gmTp) = ¥ o) = S dBu* (@), (1, ) )

gives the component of qu on z,bj.
A projection operator P that selects all the open channels at the given energy has

the property that PV¥ yields the same asymptotic behavior in all channels as does ¥
itself, The projective space # of P is the open-channel subspace, and its complement
2, into which Q =1 - P projects, is the closed-channel subspace, In a reaction, reson-
ance behavior may occur because of the formation of a relatively long-lived compound
state of the total system or a long-lived state of an intermediate fragment, when channels
with more than two particles are open. Such a quasi-stationary state is described by the
vector Q¥. In configuration space, the representative of Q¥ becomes vanishing outside
regions in which fragments of an open channel are interacting.

Assume that no portion of the channel subspaces ‘5am or 6Bn belonging to open



channels is required in the description of a true compound state and, hence, that 2 can
be chosen to contain these subspaces (ref. 7). In the case of a nucleon-nucleus collision,
the long-lived compound state of the total system can be visualized as being formed by a
succession of particle interactions, The process starts when the incident nucleon inter-
acts with the target nucleons in their ground state of motion, The true compound nucleus
state is reached through sequences of interactions in which the motion of the compound
system becomes progressively more complicated, Beyond some stage in the process,
the system is described by the part Q¥. The class of open-channel projection operators
which will be employed is based on the assumption that, in the expansion of ¥ in a com-
plete set such as the ¢y,» DO Open channel ¢ is required in the description of the com-
pound system after the excitation sequences have attained a certain degree of complexity.
Then, there exist open-channel projectors P belonging to the class, since (1-P)¥ can
describe the later stages of the compound systemn somewhere (depending on the exact
choice of P) beyond this point,

At the given energy, let the set of all open @ channels be AC = 0,12, , .. ,Mo)
and the set of all open B channels be B® = (0,1,2,. . .,N%. I £ contains the sub-
space ﬁAo, then P may be written in the form

(8)

where Iy projects onto the largest subspace of £ that is orthogonal to 6 o Similar-
A

ly, if 2 contains $ o then P has the form
B

(9)

where HO' projects onto the largest subspace of 2 which is orthogonal to 6 o Every
B

open-channel subspace £ to be discussed herein contains the channel subspaces in their
entirety and has a projector that can be expressed as in equations (8) and (9). The chan-
nel subspaces themselves are defined differently in the section RELATED PROJECTION
OPERATORS, but forms exactly analogous to equations (8) and (9) will hold,

The open-channel subspaces 2 of the class considered herein are special cases of
projective spaces that contain the selected subspaces '5A and -55 The construction of



projection operators for the more general case is treated, No complications arise in the
more general case, Such projection operators II satisfy the subsidiary conditions

m, (1-M=0 mcA (10)

Mg (1 M=0 ncCB (11)

The projector II qualifies as an open-channel projection operator of the class given by
equations (8) and (9) when the sets A and B contain, respectively, A° and BC,

If no compound states occur in the reaction, there is no restriction whatever on the
extent of the subspace £ in the Hilbert space of the problem. In the effective Hamilton-
ian for PV¥, the part that contains the rapid energy dependence associated with any re-
sonance effect will have, in this case, a smooth energy variation. (The effective
Hamiltonian is given by equation (148) in the last section of this report, and the resonance
part is the second term on the right.) Infact, 2 can be taken to be the entire space,
so that P is then the unit operator. Consider the scattering problem defined by a phen-
omenological potential model, to which are ascribed some number of internal states that
involve some degrees of freedom and correspond to certain excitations of a many-body
system. Such a model is employed to reproduce the part of the direct scattering that
involves these excitations in the real many-body case. The Hilbert space in the model
problem corresponds to a subspace .?M of an open-channel subspace £ in the full many-
body problem. The projector pg onto ?M is the projection operator for a selected
set of open channels in the full problem. An exact generalized potential, which corre-
sponds to the model, can be expressed uniquely in terms of IIM and P. The scattering
eigenstate 9(+) given by the potential derived from HM satisfies HM9(+) = 6(+). This
exact potential is defined so that 9("') yields transition amplitudes for the selected set
of channels that are identical to the corresponding energy-averaged transition amplitudes
of the system. The potential will have imaginary parts to simulate the effects of the
excluded open channels, as well as the energy-averaged effects of the processes that
proceed through the compound states.

H now the internal states appearing in HM are replaced by the corresponding ap-
proximate states employed in the model, the resulting projector HM acts like the unit
operator on the scattering state 5(+) given by the model. The projector can be employed
in the model calculation, however, as a formal device for obtaining the coupled equations
that describe the reaction. The conditions (egs. (10) and (11)) can then be regarded sim -
ply as properties of the projector that are useful in constructing it, There are, of
course, projection operators other than l'IM, that yield the correct asymptotic behavior
in the selected channels. An operator HS having this property could be a projection into



a subspace of ‘?M' Such a projector may belong to the same class as IIM, or may be
entirely different from the type of projectors discussed here, In any event, l'IS enable us
to write '

Ty = Ilg + Qg
gQg =0

where HS does not act like the unit operator on 9("') The corresponding properties hold
for HM and IIS, the counterparts in the model problem. In the computatmn of the
scattering solution 9( ) the resolution into two orthogonal parts might be useful, since
the part QSG( +) is 11m1ted to the interior (interaction) region of the configuration space
of the model,

In a phenomenological calculation, the following view can be adopted: Employ the
suitable projector ﬁM for the problem. The model potential that should be used ulti-
mately is the one that approximates most closely the exact potential derived from the
associated II,,. In the calculations, ffM is always taken as the unit operator in the
problem, and the potential is adjusted so that the scattering given by the model agrees
best with experiment.

Transformation Functions
For every pair of channels, eam and fn, a transformation function can be defined.
The indices m and n will be suppressed for the present to discuss, for a given pair of
channels, the transformation function
Kl(rO; R) = <r0’ ¢ IR, Xll/>
and its adjoint

When a vector in R space is operated upon by Kl, the result is a vector in ;0 space,
and conversely for KIT. The evaluation of K1 follows easily:



Kl(;O’ i;{.) = /6:0, ¢ l;b, I-:']_, E'> d""<§', 1-:', g' lﬁ, X¥)
= [6@F, - T)e*@, T) aro(@ - Bx@w @)

In the volume element, the fact now used is that dr. 1= 8 dR when ;0 is held constant.
(This result is equivalent, of course, to the Jacoblan of the transformation from (ro, r1)
to (ro, R) having the value [mp/ (m, +m )] = 1/8.) The following equation is finally
obtained

K, (g, R) = 8g*(@x(X) = 8g*(2R - T)x(2r - 2R)

where g(;l) has been defined by equation (7). From the transform Kl, two iterates
can be constructed, namely, K_.= KlKlJr and _:K = KITKI, These iterates are nonnega-
tive, Hermitian operators in r, space and R space, respectively. The operators K
and K are represented by the expressions

K(T,

o Th) = le(FO, Rr) aR'K, T (&, )

<;0, ¢IHBII-'.'0, oy (12)

and

E(R, R') = (R’ xw']_'[a ,ﬁv, x¢/>
These operators occur in such projector products as
I, Mg = /d?blx'-"o, ¢)K1(§’b, B\, | d
=Ky | o)xy| (13)
fdr lr',¢>)K(r0,rb')(r ¢, dr

=K|p) o] (14)
10




Mgh 1, = i [R, xpy KR, Rro)(RY, xy| aR

= K[y | (15)

In equations (13) to (15), the operators are exhibited in separable form with the trans-
form for either ro space or R space factored out in each case. The separable prop-
erty of the projectors and their products ensues from the character of the channel sub-
spaces, which they transform, Each channel subspace itself is a linear manifold whose
vectors all have a certain separable form,

The operation of II o and II 8 can be summarized conveniently in the following set

of rules:
I,(e) =psd

Ha(C’XW) = (K10)¢’
(16)

Y

Igleg) = Ky p)xw

Hgloxy) = oxy J

In the next section, it is shown that constructing a suitable open channel projector
from II o and HB requires the inverse operators

el
- (1R - “)'1

But K1 is not, in general, represented by a separable function of the variables (ro, R)
As a result, K and K cannot be obtained in closed form. The desired projector can be
expressed in terms of the eigenfunctions of K and K, and this form serves to show its
general structure. The eigenfunction expansion, however, does not represent a prac-
tical method of evaluation because it requires the difficult preliminary step of computing
the eigenfunctions.

The operators K and K have a common eigenvalue spectrum. X )\ZKuA =u,,
K1T u, is an eigenfunction of K with the same eigenvalue. Let vy denote the suitably
normalized eigenfunction of K (with the square integrable eigenfunctions normalized to

unit magnitude). The eigenfunctions uy and vy satisfy a pair of coupled equations

(17)

11



7\K1Tu)L ==V
(18)

?xKlv)t = -u,
where A is real. Because ¢, x, and y are bound states, the kernels K and K van-
ish exponentially when either of their arguments becomes large. The kernels are con-
sequently square integrable and, hence, bounded (normalizable) kernels. The eigen-
value spectrum is discrete in any finite interval, and each discrete eigenvalue has finite
multiplicity.

There is no eigenvalue equal to zero. The expansions of K and K in their respec-
tive sets of orthonormal eigenfunctions, converge. The kernel K1 has the bilinear

expansion K, = EA(I/A)IuA)(VAI, whereas K and L have the expansions
2
K =2, (1/2%)]u,)@, | (19)

L=l + 2,02 - D7 Hu), | (20)

The set of u, having finite eigenvalues is not complete. The additional orthonormal
functions that must be added to complete the set can be considered as eigenfunctions
belonging to the eigenvalue infinity. From the asymptotic behavior of K, it is seen that
for finite A, u, vanishes when ry becomes large. The additional eigenfunctions do not
enter into the expansion (eq. (19)) of K or of its resolvent kernel (the second term on the
right of eq. (20)). All the summations just shown have no contribution from these addi-
tional eigenfunctions. However, when the expression L = 27\2(7\2 - 1)-1'11)\)(“)\' is
written, it is understood that the sum extends over the complete set. An exactly parallel

discussion holds for the expansion of K and L in the vy -

THE PROJECTOR Tlgg

Take any pair of channel subspaces “Bam and ﬁﬁn' As an example of a linear space
that contains these two subspaces, what might be called the minimal one is first dis-
cussed, namely, the space that is spanned by all the vectors of Jjam and Jjﬁn combined.
The indices m and n may be suppressed for convenience, and the desired projective
space designated by the notation

8448~ B %) (21)

12



When m =n = 0, the projection operator for '501 + qualifies as an open channel projec-
tor in the two-channel case, where only the lowest internal energy state in each channel
is open. The space defined by equation (21) can also be prescribed by the formulas

ﬁa"'B = 6& @ Jjﬁpa (22)

ﬁd"‘ﬁ = ‘53 o JjapB (23)

Here, ‘5Bp o is the largest subspé.ce of ‘53 that is orthogonal to ‘501 and can be viewed
as the space spanned by the components orthogonal to ﬁa of all the vectors in JJB, or
equivalently, of all the vectors belonging to a basis set for JjB. To the equivalent direct
sums (eqs. (22) and (23)), there correspond equivalent forms for the projector onto the
subspace, namely,

II =I,+ 1

=Hg +Hgpe =g ozpBw

a+8

In 1

o Bpa =0 ” (24)

Let a set of basis vectors for Jjﬁ be % AXWs where the functions ¢ (R) form a

complete orthonormal set for functions of R. Then ﬁﬁp o is spanned by the vectors
(1-1 )yh, which have the scalar products

(- Ty, |- Ty, =<y, 7,00 - Iy, [Ty, 0

=0y, - (Kq0, [Kq0,0)

The operational rule (eq. (16)) was used in the last step. If now the choice Oy =V, is

made, then with the aid of equation (18), the vectors (1-II a)yk will be orthogonal to each
other and AZ = 1. An orthonormal basis set for ‘5Bp o is given by the vectors

o = My (@ - I vy xw

= M, (v, Xy + A'luxtﬁ) N (25)

13



-1/2
where the normalization constant is MA = (1 - 7\'2) . In the same way, an ortho-

normal basis for JjapB is given by the set

X, =M, (1 - I, ¢

= Mk<u7t¢> + )\'lv)\xzp) (26)

The projector II Bpa can be written with the help of equation (25) as
Ogpe = 2 [T <Fy | 27)
Moo = <L - 1r0>l¢)<¢>l - LK, [o)ow| + Thandtewl - T, [xw)(o| (28)

and a corresponding 2form for II, DB follows from the basis vectors (eq. (26)). Note that,
if the eigenvalues A“ = 1 occur, the corresponding vectors (1-II a)yl are null vectors
and, therefore, do not contribute to the sum in equation (27).

The projection operator II given by Mittleman (ref. 2) is now discussed. This
operator can be written as

=R, + Ry (29)

Then, II is defined by the following two properties: (1) for any state vector ¥, II¥ has
the form

R,¥=u¢
(30)
RB\P = vxy

and (2) II satisfies equations (10) and (11). Both conditions (1) and (2) are required to
specify the operator uniquely. The form (eq. (30)) is desirable for computational pur-
poses. Coupled equations for u(;o) and v(ﬁ), each functions of a single coordinate,
describe the relative inotion in the @ and B channels in terms of the natural coordin-
ates for each channel. At a large magnitude of its argument, each function yields the
corresponding transition amplitude directly.

That II is identical to II a+B is easily shown and is fairly obvious from the dis-
cussion of II @+ just given, The projective space of II is limited by condition (1) to

14
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contain no more than Jja and J,SB, and by condition (2) is required to contain them in
their entirety. To obtain R o and Rﬁ’ equations (10) and (11) are written as

(1 - Tp)(1 - 1) = 0

(31)
Mg(l - My)(L - ) = 0

Employing the property (eq. (30)) and the operational rule (eq. (16)) then gives

M,(1 - )% = I(1 - Tg)l jugp
HB(l - Ha)\It = HB(l - Ha)Hﬁvxa,l/

It follows that

R, = M, AIL, (1 - TTp)
(32)

Rg = IATIG(1 - TL,)

B B

where A and A are Hermitian operators in the subspaces ﬁa and 63, respectively,
with the defining properties

M, AT, (L - T, = I, (33)
A - = 34
IR, (L - T )G = T, (34)
The transforms
L(;O’ I-'.()') = <;0, ¢|A|ro'a oy
f(ﬁ, R') = (R, xz[x!K]ﬁ', XY
permit A and A to be written as
15



A =T AL =L|¢)(5]
| (35)

A = IR, = T]xy)(xw|

Inserting these expressions for A and A into equations (33) and (34), along with equa-
tions (3), (5), (14), and (15), shows that L and L are the inverse operators given by
equation (17). The forms (eq. (35)) permit R o and Rﬁ to be written as

R, =L{®)(6]| - LKy [ p)xy| (36)
Rg = Th)tw| - LK T )@ (37)

Comparison of equations (36) aéld (37 W'itél equations (24) and (28) verifies that I = II @B
From equations (32) to (34), R, =R,, RB = RB and RaRB = RBRa = 0. The idempo-
tents R o and RB are not Hermitian, however, and hence are not orthogonal projec-
tions.

A null vector results when (1 - II ﬁ)ﬂ o operates on a vector in the subspace
Jjaﬁ = ﬁaﬁ 53, the intersection of 8y and 53. The operator relation (eq. (33)) is
understood to be valid in the subspace of & o which is orthogonal to S ap’ In geometric
language, the problem posed in obtaining A by means of equation (33) is the following:
Consider a unit vector in & o that is orthogonal to Sy g Subtract from this vector its
component in JjB and project the remaining vector back into H o Find the operator A
that reconstructs the original vector from the value of the projection. Similar com-
ments apply to the interpretation of equation (34).

Because 6 ap is a subspace of both S, and 5 3 any normalized vector in the
space can be written in the dual form

PY = axy (38)

where p(;o) and c(ﬁ) are suitably normalized functions. Operating on the relation
(eq. (38)) with HB and II , gives, respectively, with the help of equation (16),

KlTp =0¢ and p =K 0. Comparison with equation (18) shows that a vector (eq. (38)) in
By 8 corresponds 50 an eigenfunction of K (and to the associated eigenfunction of K)
with eigenvalue 1™ = 1. The converse holds as well, because u;¢ is invariant under
the operation of II al‘l BA o Excluding & ap from the domain of validity of equations (33)
and (34) is equivalent to the elimination of the terms in the sum (eq. (27)) that corre-
spond to 'Az =1, Actually, the relation (eq. (38)) imposes severe restrictions on the
possible functional forms of p(;o), o(ﬁ), g(_fl) and x(r). The allowed functional forms
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are derived by Coz (ref. 3). However, uy and v, are given therein with an incorrect
sign in the exponential arguments. Taking the scalar product with y on both sides of
equation (38) yields pg = ox. The forms allowed by this relation are p « exp[-(l/ 4)xrg],
g o exp [—(1/4);@{', g < exp[-(l/Z)KRz], and y < exp[-(-l/S)xrz], where k is a constant.
Consequently, in most problems ‘5013 is a null space, and the case A“ =1 does not
occur.

Projectors like II 0+8 do not appear promising for computational applications. When
more than two channels are open, the construction of the corresponding projector in-
volves the solution of a set of coupled integral equations. The computing effort required
in the preliminary problem becomes as great as that for the scattering problem itself.
However, the methods and notation developed in this section carry over practically un-
changed when the related projection operators that can be evaluated easily are developed.
The equivalence of the two definitions of Ha+ has been rigorously demonstrated, and
either way of specifying the projectors to be discussed hereinafter will be freely used.

RELATED PROJECTION OPERATORS
Redefined Channel Subspaces

Suitable projection operators exist, closely related to II a+B’ that do have a simple
closed form. These projectors follow as the result of describing one type of channel
(e.g., the B channels) by a pair of variables that are not the natural ones for these
channels. Such a choice of coordinates is equivalent to redefining the corresponding
channel subspaces. The approach is suggested by the work of Chen and Mittleman, who
have given a projector of the kind desired. The projectors derived herein have a more
simple form than theirs and are more convenient for computational applications. The
two-channel case is treated first. It is then easy to generalize to any number of channels.
The projector of Chen and Mittleman is described within the context of this discussion.

The two-channel case is first formulated with sufficient generality that all the related
projection operators that are expressible in closed form can be identified. The two most
suitable operators are the result of using a redefined o channel or a redefined B chan-
nel. _Elonsider now the possible choices of coordinate pairs from the set ;0, r. 1) ﬁ,
and r. The first two variables constitute the natural pair for the a channels. Other
descriptions of the a channels are now to be considered. Retain the internal coordinate
r. 1 but leave open the choice of the other coordina,te_i _b:l #* Fl’ from the remaining three.
Similarly, the natural pair for the B channels is (R,r), but now fix only the internal co-
ordinate r. The other coordinate 52 #T canbe freely chosen from the rest. Let f. 1
and /2 be the Jacobian determinants for the respective transformations (?0, r. 1) - 61, i"l)
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and (ﬁ, r) - (32, r). Thus,

1 e, Ty
3(p,, T)
/2 = —-——.-.%—-_.—
(R, r)

The transformations are linear, so that }1 and /2 are real constants.

The channel subspace Syt is defined as the space spanned by all states S, that
can be represented by wave functions of the form s(5;)¢,, (¥, ¥) = (5,77, Z’|s¢m) . Such
wave functions are normalized on the volume element dry =dp; dry dZ= [f] dr, where
dr = df"o dry df = dR dF dZ. H the new coordinate basis vectors are required to satisfy

the relations
15,5 B = b V3R, T D
and

5,50 = 15 V2 [R5, D

all wave functions will be properly normalized.
The projection operator into the subspace H o'm is

Ha'm lpl l ¢m)(¢ml

NE AR AR (39)

The channel subspace JjB,n is spanned by all states representable by
tEx; (F);5(T) = <Py, T, Eltlxw)y)
and has the projector

Mg = 1o, XV vy | (40)
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For any pair of channels, a'm and B'n, the channel transformation function (again
suppressing the indices m and n) is written as

By, 0Py, ) = f (B, ¢1Ty, Ty, B ar(EY, T, T |5y, x)

S 1AL 2, 015y, Ty, B driBy, T, B [ By, x¥)

1

[£,451Y2 [ 6o, - Bye*Ey) dvix @6y’ - By) (41)

where dv' = d;O' dr, 1 =dR' dr' = dr' dr .’ 1- Equation (41) clearly shows that optimum
forms for the transformation function result when the coordinates p1 and p2 are taken
to be the same variable, designated as p When the same coordinate is used to describe
the relative motion in both channels, the transformation function will be proportional to a
delta function in the coordinates, and the integration involved in obtaining the first
iterates will be trivial

5, 817, x) = |£5]Y %66 - 7 /8@ - By dvix(E) (42)

-t

The choice of variables has now been narrowed down to /-; being either ;0 or R.
For the sake of completeness, another possibility, is mentioned, namely, p1 = r

p2 = rl, which gives (r ¢ |r1, Xy = x(T )g*(rl) Because the kernel is separable in

these coordinates, it is easy to evaluate the first iterates and to construct the related

projection operator II a'+B' However, a projection into redefined channel subspaces

for both channels would not appear to have any application, and this case will not be dis-

cussed further,

The Projector My+p

Consider first the case where p = FO in equation (42). Then, natural coordinates
are employed in the « channel, The channel subspace is B4 and ll =1, When the
coordinate pair (ro, r) is used with the B channel, however a redefined channel sub-
space 5.3'11 serves; to dEscnbe the B channel. The projector onto ‘5B'n is given by
equation (40) with Py =rq. Thus,
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g, = 1, Ol[xw]n)([xw]nl
= f dryr vy, ) (Fo', ] | (43)

The Jacobian /2 has the value 1, and equation (42) yields directly the transformation
kernel

JI(FO’ i"’()') = <;0, ¢ IFO'X’W

=8(r - Fov)h(i’o) (44)
where
h@ry) = [ g+ X - Ty dry’ (45)
From Schwarz's inequality,
Ih@)]? < Ele) (46)

The possibility of the two sides in equation (46) being equal is excluded by the reasonable
assumption that x, as a function of ?1, is never proportional to g(rl). Because gy

is a term that occurs in the expansion of ¢ in the complete orthonormal set of states of
nucleus &f-1, the normalization of the bound states ¢ and Y to unit magnitude implies
that

ca=le)=1 (47)

The equality sign in equation (47) holds only if ¢ =gy. The bound state nature of the
function ¢ (or g)and y shows that

h(ry) ~ 0 when r,>>R, +Rp | (48)

The first iterates J = JlJlT and J = JlTJl are easily evaluated and are seen to be
the same operator in r, space
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IETo) = f g3y o T W, @y Ty

=<.F0, ¢ IHB' li'.o', ¢>

A = - 12

= 6(r0 - ro')lh(ro)l

= <;0, XWlHa';o', XW) = J(FO’ FO')

The operat1on of the Hermitian, nonnegative operators J and J is merely multiplication
by [h(ro)[ Henceforth, the following simplified notation for operators that are diag-
onal in the ro representation will be adopted

To
(49)
I, on*1
1 r0
e 12
J=T=|nl“1 (50)

A normalized elgenstate of J is 6 , where (r0|6 =0 (ro) = ti(r0 a) with the eigen-
value [h(a)[ The continuous set {Ga} is a complete orthonormal basis for r0 space.
In contrast to the kernel K of equation (12), the kernel J is not bounded: it has such
a simple form, however, that the required inverse operators can be constructed directly,
and eigenfunction expansions of the operators need not be resorted to at all.

Operational rules, analogous to those of equation (16), are easily established:

m,(e¢) =Pd )
I (Px¥) = (@1P)9

(51)
g (e9) = @;P)¢

Mg, (oxy) = Pxy

The subspace 50“_3, is the space spanned by all the vectors of S, and ﬁﬁ' com-
bined. The projector Ha+B' onto this subspace may be constructed from the expressions
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I =M, + 11 (52)

a+p' B'pa

I (53)

a+pr =g+ Mypg

When the only open channels are the lowest & and S ones, then the corresponding

1 o+, can be used as the open-channel projection operator. The form (eq. (52)) shows
that this projector is particularly appropriate for the pickup process. The a channel
is then the incident one, and II , commutes with the noninteracting Hamiltonian for the
a fragments. Hence, among its boundary conditions, II o +B,\If has the same incident
plane wave as V¥,

An orthonormal set spanning H g is the continuous set of vectors Vg = 05x¥. The
component of Ya orthogonal to & o is proportional to the unit vector

¥, =n(a)d -1y,
=n(a)5] x¥ - h(2)¢] (54)

In the last step, equation (51) and the equation Jlaa = h(E )Ga were used, From equa-
tion (54) and the projector properties of II o

(¥, 7,0 =n(@m@)(y, |y, - My, [Ty, 0]
=n2@)1 - [n(a)[2)s@ - 31

- -1/2
If the normalization constant is chosen to be n(a) = (1 - lh(a )Iz) , the vectors Y,
constitute an orthonormal set, Accordingly,

Moo = S & 17,7, ]
=@-ny) fdan?@)ly,)(v,| @-1)

= (1 - W n? 1, )] - 1)

- n? 1r0(1 - Mg, (1 - ) (55)
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g g = n 1r0[nB,(1 - 1) + T TG, (1T, - 1)]

=1, [hanow] - 3" ] + 31600l - 3110w ]] (56)

The following relation was required in arriving at equation (55):
fda’nz(a)[aa)(aa[ - fdi»’onz(}’o)li’o)(f’ol - n? L

The product relations involving 1II o and II,,, which are the direct analogues of equa-
tions (13) and (14), were used in the step to equation (56). If the vector Wos orthogonal
to &, is defined as w, = n(xy - h¢), where it is understood that n and nh are vec-
tors in ro space, the projector can be written in the concise form HB'pa = lrolwo)(w0 | .

Another expression for II , LB corresponding to equations (29) and (30) in the prev-
ious case, is

where
Ra\Ir =Fo¢
(58)
RB.‘If = Gxy

—

and f" and G are vectors in r, space. The other property, in addition to equa-
tion (57) and (58), which determines the projector uniquely can be written

Ha(l - HB')(]' - Ha+Bv) =0
(59)
HBv(l - na)(l - Ha+Bv) =0

Combining equations (57) and (58) with equation (59) and using rules (eq. (51)) give
M, (1 - Hg)¥ = M, (1 - Mp )T, F o
and

23



Hﬁv(l = Ha)‘I’ = HB'(I - Ha)HBvGXII/

It immediately follows that

Ra = HaAOHa(l - HB')

(60)
RB' = HB,AOHB,(I - Ha)
where AO and XO are Hermitian operators in the subspaces & o and £ gr respec-
tively, which are defined by the relations
M, AoT, (1 - Tig ), =10,
(61)
_ ) -
Tg AgTg, (1 - I )g, = Iig,
It is clear that ﬁa and RB' are idempotents and satisfy ﬁaRB' = Rﬁ'ﬁa = 0. The
separable forms, similar to equation (35),
Ag =TI AQT, =O[¢)¢|
Ko = HB'KOHB' = EIXU/)(X‘P'
enable the conversion of equation (61) into the equivalent equations in ;0 space
o1, -J)=1
(-9 =1,
o1, -J)=1
(- T)= 1,
From equation (50), the solutions are simply
= 2
0=0=n 1r (62)
0

When the solutions (eq. (62)) are inserted into equation (60), the result can be written as
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Ry =01, [6)0] - nh 1y |90

(63)
Rg =n’l, el -n 2 1, RptalC]

Comparing equation (63) with equation (56) and using the identity (1 + n2 |h|2) = n2
verify that the forms (eqs. (52), (53), and (57)) are equivalent.

The Projector Ty,

The other choice for the variable in equation (42)is p = R. In this case, the coor-
dinate pair for the B channel is the natural one. The channel subspace is H,. and
/2 = 1. When the pair (R rl) is taken for the a channel, the redefined channel sub-
space §,mmn has the projector H = R|¢> )(¢ | The Jacobian / has the value
1/8, and the transformation funct1on II(R R') = (R IR' xy) is the (dlagonal) represent-
ation of the operator I = (1/8) 1R’ where

L(R) = f g* <R - %r) x(r') dr’

The first iterates of I, are simply I= I-= (1/64) |l |2 Rr- These Hermitian operators
possess the continuous set of eigenstates Gb(R) = 6(R b) which are a complete ortho-
normal set for R space. The vectors X, = 6b¢> span &,

The subspace H which is spanned by all the Vectors of & o and 5 3 combined,
has the projector

a'+p’

= 64)
Myrg =Tg+ Hgug (
Hyrig =My + Bpo

My, = Ros + R (65)

where R, ¥=Fo, ﬁB\II = axz,l/, and F and G are vectors in R space. The form
(eq. (64)) shows that open-channel projectors of this type will be useful for the stripping
reaction. The vectors
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X, = m(b )(1 - Hﬁ)xb
=m(b )Gb[q,’) - (1/8)1*(b )xy/]

- - -1/2
with normalization constant m(b) = [1 - (1/64) ll (b)lz] , are an orthonormal set and
span $ a'pp" Hence,

I

I

S B %) (x|

m®15(1 - M, (L - Ty

a'pB

m? 11, (1 - ) + T [9)(g | - Mg,,)

]

g l wo')(wo' |
where the vector w,' = m[¢ - (1/8) *xy/] is orthogonal to & g The form (eq. (65)) can

be evaluated by a sequence of steps that directly parallels those which lead from equa-
tions (57), (58), and (59) to equation (63). The results are

Ry = I ApTly, (1 - Th)

and

where it is found that

2
AN =m lRH o'
and
K, =m2 1,1l
N RB
The identity 1R + mzi = m2 1R is used to verify that equations (64) and (65) are equiv-

alent,
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The Projector Tlg4c

The subspace ‘5311 is defined with reference to a specific pair of internal states for
the B fragments 9 and -1, as indicated by the notation (xzp)n = Xiwj' Consider the
set of all channel subspaces obtained with a given state . when X; runs through a com-
plete set of states of the nucleus 9, including those in the continuum, These spaces are
orthogonal to one another, and their direct sum is denoted by $ cj* Alternatively, & cj
can be characterized as the subspace spanned by all states that are representable in the
form g(ﬁ, _f)tpj(z ). The projection operator for the subspace spanned by all the vectors
of & am and § cj combined can be applied to the pickup or stripping process. This type
of projector has been discussed by Feshbach (ref. 1).

The projector onto H cj can be written in various forms, namely,

My = gl ¥yl = 1 1 |4yl
- f |F0v,F1v,¢j> dr d;l'(;o',;l',wjl (66)
The transformation function K2 is easily evaluated
Ko o; FO-,Fl;mj) = (T, ¢m|§’0v,§’1v,¢j>
= 8(rg - o8y *@1") (67)

Hereinafter in this section, the indices m and j will be supressed. The first iterate
K' = KZKZJr is an operator in ;0 space, while the iterate K' = KzTK2 transforms states
of motion of particles 1 and 2, that is, operates on vectors in (FOF 1) space. Evaluating
the kernels

K'(FO, I-’Ov) = <I~’0, ¢|nc|1'~’0', o)
K'(Fo, 5’1; E’Ov,i’lv) = (i’o, Fl, d/lHal?o', Flv, )

shows that they are the representatives of the operators
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24

K =¢
o°r,

(68)
K = erIg)(g, = cg lrolwl)(wll

where wy is the unit vector wy = (co)' lg. The eigenstates of K', all having the eigen-

value cg, are any complete (in FO space) orthonormal set {X u} . From the normalized

function wl(i" 1), an orthonormal set {WV(FI)} can be built up that is complete for func-
tions of T;. Then the eigenstates of K' may be enumerated as the set X uwy belonging
to the eigenvalue cg, plus the set X uwv’ v=2,3,. .., belonging to the eigenvalue
zero. Also required are the relations

KZ(Xp.Wv) = 5u1(coxp.)
and
T

w= coX“.W1

Operator products involving 1II p and II c may be written in the separable form as, for
example,

m,0, =Ky |e)w| =c, 1r0|¢>)(w1¢/l

. _ 2
m,I 1, =K' |[¢)@]| =g,
and
mO,I, =K ||

The required operational rules are simply

~
I, (pp) = P

II = (K
a(é"l’) (2§)¢ ? (69)

() = (Ko o)y

n.y) =ty
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Now the projector onto the subspace §
valent forms

a+c CAD0 be constructed from any of the equi-

Hye =T+ Mype (70)
My,e =Ty + Moy, (11)
N, =R, +R, (72)

where R,'¥ =F'¢ and R, ¥ = Ty. The form (eq. (70)) follows from the fact that
Saic is the direct sum of §H c and the largest subspace of § o that is orthogonal to
$,- The subspace §, is spanned by the set {X#(p}. The unitzv_ei:}grs N(1 - Hc)X”¢
= NX N-(¢ - gy), each with the normalizatiozn constant N = (1 - co) , are an ortho-
normal set that spans ‘5apc' Note that ¢, = 1. The equality sign holds only if ¢ is
proportional to i, in which case, § arc =P Hence, the required projector for equa-

tion (70) is

o
2

Oype =NZ,(1-T )X, ¢)(X, o[(1-10)
= N3(1 - I, (1 - T,
= 1r0|¢0')(¢0'|

where ¢ ' = N(¢ - gy). The orthonormal vectors =z
normalized components orthogonal to B, are

wy = Xu_wvlp span §,, and their

Eul = N(1 - Ha)zp.l = NX“(wlzp - coqb)

zuu=(1-l'[)z“v=z v=2,3,. ..

By

The vectors 'z‘y.y are orthogonal to one another as well, so that

29

b S



cpa
oo
IE'“I Zp.ll - ,zp.l><zp.1”+ E [z‘w Z 0
u:]_ y:]_

-1, [l0505"] - Iy + 11,

where qpo" = N(Wll,b - co¢>). The projector can also be written in the form

Mopg = (1 - A (L - 11,) (73)
in which
A= Z Nz, eyl + Z (20 (2|
IJ.=1 V=
2
= |(N“ - 1)1r01w1)(w1} 1l ; lw ) w 1 )]
=NPO T+ T (74)

By the now familiar procedure, form (72) is obtained from equations (like eq. (31),
but with II c instead of 1I ﬁ) that impose the condition that & e contain the subspaces
$, and §, but no more. Accordingly,

R,' =T AT, (1 - 1)

(75)
R, = O AT (1 - 10,)
where A' and A' satisfy the respective relations
H AT (1-O)0, =10, (76)
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o (17)

I A (L - D), =11
Inserting the separable forms A' = L'|¢)(¢| and A' = I'|y)(y| into equations (76)
and (77), respectively, shows that

and

—_— —'_1
L'=1(1_1 - K'
<ro 1 >

From the structure of K' and K' given by equation (68), it follows that

_ N2
L'=N 1r

0

and
o0
It = 1r0 N2|w1)(W1| + Z; ]wv)(wvl
V=

The expression for L' is its expansion in the eigenvectors of K' and confirms the
equivalence of the definitions (eqs. (74) and (77)) of A'. The condition II o1-1
yields the identity Ha = Ra' + II aR e Hence, equation (72) can be written as
Oye =g+ 1 - Ha)Rc’ which, with equations (75) and (73), shows the equivalence to
equation (71) explicitly. Note that the set W, serves only as an intermediate construct
for deriving the projection operators. All v, for which v = 2 can be eliminated from

the final forms with the help of the closure property.

ase) = 0

MULTICHANNEL PROJECTION OPERATORS
The Projector Ty, p

The two-channel projection operators given in the preceding section are easily gen-
eralized to any number of @ and B channels. In this section, the first case treated is

the extension for the projector II The corresponding discussion for the projector

a+8'
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II A'4B closely parallels that for II a+f' and need not be given explicitly. The redefined
8 channel subspace By is the direct sum of the orthogonal subspaces 5 g’ ncC B, and

has the projector

where Il;, . is given by equation (43). Now the projection operator onto the space
SA.B" spanned by all vectors of & A and Sgr combined is required. The projector
may be written as

HA+B' = HA + HB'pA (78)
g =Ipr + Ippp: (79)
where the operators in equation (80) have the properties
~ A
Rp¥ = z : Fm("bm
mcA
. (81)
R'Bv‘I’ = E Gn(X'l/)n
ncB ,

Sums over m and n with unspecified limits will be understood, henceforth, to range
over the selected values contained in the sets A and B and to comprise M and N

terms, respectively.
The transformation functions are given by equations (44) and (45) as

JI(ITO’ Fo'i m, n) = (FO’ ¢m I;O'? (XW)n>
= 8(T - Tg' () (82)

where
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han®o = Bjm * (1 - T1") dFy’ (83)
The array of operators (in FO space) J l(mn) can be represented as a matrix

Iy = 1r0h' (84)

where h(;o) is the M X N dimensional matrix whose elements are the functions given
by equation (83). The iterates

J(;O, ?0';m,m') =2, f Jl(?o, ;0";m,n) dFOHJlT(;OH’FO';n’m')

= <;0’ ¢m IHB' IFO', qu')

represent an M-dimensional square array of operators (in T, space) J(m,m'), which
0 b ’

can be writtenas J = 1r hhT. Similarly, J=J 1TJ1 gives an N-dimensional square
- 0 -
array J = 1 hTh. Note that J(m, m')T =J(m',m), J(n, n')T =J(@m',n). Only the diagonal

operators of the arrays J, J are Hermitian, A normalized e1genvector of J(m,m"')
and J(n,n') is 5a, with respective eigenvalues [h(a )hT(a)]mm, and [h (a)h(z )]nn
In addition, 6a satisfies the eigenvalue equations

J,(m,n)s, = hmn(E )8, (85)
3 m,n)fe, =n_ *@)s, (86)
Once more, the operator products are easily obtained in the separable form
Mg, = EmEnJl(m,n)|¢>m)([xtp]n|
MyMg, 0, =2, % J@m,m")|é Wb,
g, I, Iy, = 2,2, T@,n) [[x¢] ) x¥ ] |

The required operator rules also follow directly
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_ ~
1-Iozm"(qum) - ﬁmm'p¢m

I, [P0, ] = [T (mn)ele
(87)

g () = [T @n) J0xw),

HB.n'[P(Xlll)n] = 5nrn (X’J/)n y

The subspace ‘5,8'n is spanned by the orthonromal set {Yan = 6a(x1,l/)n}. The N
sets, each having a value of n C B, are orthogonal to one another and provide an ortho-
normal basis for Spr- The basis vectors Yan have components orthogonal to 5,
given by

Yan = (1 - Op)¥ap = Yan - ZmPmn(® Xam

= 6awn (88)

1_1’1 which x, =~ =06,¢ , o, =X¥), - Z b, ¢, and h ., is understood to be a vector in

r, space. The operator rules (eq. (87)) and equations (85) and (86) have been used. The
scalar product

<37anh7arnv> = (yanlyarnv> - (HAyan’HAyavnv>
=6, ,0@-2a") -3 h_ *@)h_ _(2)5@ -2
= [1y - BT (E)h(a)],,, 0@ - a7

shows that the sets {}_'an} are not orthogonal.

To each value of @ there corresponds a set of N vectors Van’ n C B, I the
vectors of this original set are independent, any orthonormal set constructed from them
will also contain N vectors.- The scalar products given by a set of N vectors form an
N-dimensional Hermitian matrix, An orthonormal set of vectors can be obtained from
the original vectors by the unitary transformation matrix U(E) that diagonalizes the
matrix, If the Hermitian matrix is interpreted to be the representation in some (ortho-
normal) basis of an Hermitian operator, then in the well-known way U(2) transforms
to the new basis made up of normalized eigenvectors of the operator. (The columns of
U are the components of these eigenvectors in the old basis,) The same transformation
on the original set of N vectors yields an orthonormal set, Such orthonormal sets,
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‘obtained for each value of E, span the subspace ‘5B'pA and provide a convenient expres-
sion for its projector,

To obtain an orthonormal basis for the subspace ‘5B'p As consider the diagonalization
of the matrix 1, - nt (2)h(2). For the time being, the dependence on a of the matrices
and eigenvalues that arise in the discussion will be suppressed. The matrix hTh is
Hermitian, so that there is a unitary matrix U that diagonalizes it, Thus, write
UThThU =hp = (Gnn,hn), where hp, isa diagonal, real (N-dimensional) matrix, Because
hh is nonnegative, the eigenvalues h are also nonnegative. The columns of U are
normalized eigenvectors of hTh-. A certain lack of uniqueness to the matrix U exists.
The matrix UUp,, where Up isany diagonal, unitary matrix, will serve as well and
corresponds merely to multiplication of the column eigenvectors of U by phase factors,
The Hermitian matrices are definedas d = 1M - hhT and d = 1N -h'h and are related
as follows:

_ N
dh = hd
nal-dl ¢ (89)
R R ha-tnt

The reciprocal of the relation UTEU = 1N - hy gives

=— -1
al-uy - np) ol (90)
The linear combinations of the vectors (eq. (88))

Yan . Nn(a )En'Un'n(a )yan' (91)

satisfy the orthogonality relation
(Fan Yoo = NyETL - By (E)]0, 83 - 2Y)

Because a representative of 6a. is the delta function 6(1-'.0 - E), the vector Yan can be
written Y, =6, [Q), where

Oy = ann'Un'n[ (x‘p)n' - z-mhmn'¢m] (92)
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and the quantities NnUn'n and NnUn'nhmn' become functions of r20 in the coordinate

representation of Y, . The normalization Nn(E) =[1 - hn(E T /2" hakes the Y,
orthonormal, so that

Igipa = /d;znlYan> Fan| ' 93)
Ogipa = 1rozn[szn)(szn| | (94)

i hn(E) ever assumed the value 1, the corresponding vector Yan would be a null vec-
tor, which implies that the vectors y, axlg n C B, are not independent, Exclude this
possibility, and assume that the matrix d(a) is never singular for any value of a.
Then, equation (93) can be expressed, with the help of equation (90), as

TgipA = / d;{Enzn' |Var) a'@ Vot Fan|
=-1
- 1roznzn' l ""’n)(d )nn'(wn’ l
) er [ann' I[xw]n)(d_-l)nn'(wn'l - 2;mznlqu)(ha_l)mn([xlll’]nl

+3 % ’¢m)(ha--1hT)mm'(¢m,|] (95)

mTm?*

The matrix U has dropped out of the form (eq. (95)), which shows that the arbitrariness
in the choice of U is not significant,

The form (eq. (80)) can be derived from the relations analogous to equation (59), with
o and B' replaced by A and B', respectively. The derivation leads to expressions
for ﬁA and R’B' that are the direct analogs of equations (60), where AO and XO are
now operators in § A and Hg» respectively, and can be written as

40 = ZnZmOmm: |(pm)((f’m' l
and

A5 = 2,20, o X)) O] |

Both O , and 6nn' are Hermitian operators in FO space, with matrix elements
Omm,(ro, FO') = (FO, bm IAM | ro' ¢m,>, and so forth, When the expressions for Ag
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and XO are inserted in their defining equations, which are the direct analogs of equa-
tion (61), the equations for the operator arrays O and O are obtained. In matrix nota-
tion, these take the form

0(1 1 ->=1 1
rOM rOM

and
6(1 1. - 3) =11
rO N r0 N

from which it is clear that

and

Collect the results to obtain

R, = 1rozmzm.<d'1>mm.l¢m)(¢m.|<1 - Ig,)

-1 -1
e [ZmPm @ D 90) G| - 2 2@ B)n | om) v, 1} (96)
and

)

1roznzn.(d_'1)nn. w1, [ @ - my)

1y (ZaZr @ D DO | - 22 @ 0 [0 D)0} @)

Thus, ﬁ A and RB" as seen immediately from their defining equations (the analogs of
eqs. (60) and (61)), are idempotents and their product in either order vanishes, Com-
parison of equations (96) and (97) and equation (95), with the help of equation (89), verifies
the equivalence of the forms (78) and (80).
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The Projector of Chen and Mittleman

The projection operator given by Chen and Mittleman is closely related to II ALB'
In terms of the formalism presented in this report, Chen and Mittleman employ the chan-
nel subspace H% Bn’ deflned as the space spanned by all vectors of the form p(mp)
where p is a vector in ro space and (mp) . The component My is defmed by
the representation

(FO', I-r' '?0’ T’n) = 6(f'.()' - i?o)nn(;(y I-‘.')

. - R R R (98)
N,(Tg» T) = exp(-ik rg - T/2)x;(T)
The projection operator for Jj-B-n is
g = 1p [ (| (99)

The basis vectors for the subspace are represented by
(ro', r', &' I;()’ (”ld/)n> = 6(r()' - ;0)7111(1'0, IT')WJ (—5.')

The subspaces @E , are not mutually orthogonal, The scalar product of the basis

vectors is
(;0’ (mU)nl;o', (W)nv> = 51']'1(;0, nnli:.()" n')

5(r - T W ()

where the functions defined by

-~ i;o o I—"'(Kn - Kn') — — -
Vnn'(ro) = ‘Sjj' €xp 2 dr'Xi*(r')Xir(r') (100)

form an N-dimensional matrix v(r ), which is Hermitian and has diagonal elements
equal to 1, Suppose the matrix v(ro) is diagonalized by the unitary matrix 9(r0) that
is, GTVG (Gnn,un) = vp.- Then, the linear combinations
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?ron = ﬁn(;o)znv en’n(ro) II—:'O’ (nll/)n')
are orthogonal, Their scalar products are

rOn, 'n'> —N (ro)a(r - T, )5nan (ro)

so that the normalization ﬁn(? 0) = [un(fo)]" 1/2 makes them orthonormal, The matrix
V(ro) is assumed to be nonsingular, The subspace 58> spanned by all subspaces .5B—n,
n C B, has the projector operator '

5= f 420 Ty ) T
] /d;’z = [y-l&)} [T, (). )Ty (). |
0“n“n* 0/|nn*!" O n’ ‘o n'

= 1y 2P0 g [[¥ D9y |

The relation V'l = e(uD)'leJr was used in the first step,

The subspace H A+B> spanned by & A and 58 combined, has the projection
operator

a5 = Tp + Ogpp (101)
Hp,mg=Ug+apE

where
R\¥ =2, Fp ¢m
ﬁl—B‘I’ = z:ntn(ml’)n (103)

and Fm’ -Gn are vectors in FO space., The channel transformation functions are
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<;0’ ¢m ,;0', (ﬂ‘l/)n> = 5(;:0 - ;0') Amn(;o)

with
A g = f Bim *E1 Iy @, Tg - T1") ATy’ (104)

Rather than construct II ALB by the orthogonalization process indicated in equation (101),
only the expression (eq. (102)), which is the result of Chen and Mittleman, will be given
for comparison with the corresponding form of II A+B-
The conditions
I,(1-OE)(1 -1, 7)=0
and
on the projector II A LB and the operator rules
TAPPm = PO,

and

Tiga(my), = P(my),

lead directly to the expressions

and

Ry = OgAclg(l - ) (106)

Here, Ac and KC are Hermitian operators in SN and 5B respectively, and satisfy
the relations
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(107)

H§ACH§(1 - HA)HE =Ig

The following expressions can be written:

Ac =22 Criil 6 i
~ ~ (108)
Ag = 2,20 Con [l ) O |

The operator products that will be required are

HAHE = erEmEn l ¢m)(AV_ 1)mn([ W]n l

M, 5T, = 1y BBl o) @0 80y (0] ¢ (109)

AT = 1y 2 ) &7 80, (L

When equations (108) and (109) are inserted into the defining equations (eqs. (30)), the
latter reduce directly to the equations

1,1y 2
C1, Lyy-1. avtal)y=1 1

o 0 o M
= -1 -1
C. 1.-1. Al av =1

Ty N ro Ty

The solutions are
: -1
~ C = 1 B
To
(110)
C=1 (Vﬁ)'1
To

where the matrices B(FO) and B(T, o) are defined by the equations
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B = 1y YN DN

(111)
B=1, - V"l AT A
N
and satisfy the realtions
B A=AB )
B-1_B1la > (112)
-1 -1 -1 ,\F
B lM + AB )

When the solutions (eq. (110)) along with the first of equations (109) and its adjoint are
employed in equations (105) and (106), the following equations are obtained:

Ry = L Z10)B i O | - 1 Z10) B av™Dp (| (113)

Ry =1, EI[W]n)(B'l 1m,,<[nw]n.|-1rozI[nw]n)<B“1v'1AT>nm<¢ml (119)

The relations (eq. (112)) and the matrix D = B, cast equations (113) and (114) into
the form given by Chen and Mittleman.

The projector II A+B is not as convenient to apply as 1II A+B' Because of the expo-
nential functions present, the overlap integrals (eq. (104)) are more complicated than the
integrals (eq. (83)). For the same reason, the operators (eqs. (113) and (114)) are more
difficult to employ than equations (96) and (97). Moreover, the components of Rg¥ in
equation (103) are not orthogonal, and the resulting coupled equations for the functions
F (ro) and G (r 0) cannot be mampulated into as convenient forms for numerical cal-
culations as the equations for F and G The boundary conditions on the functions
G (r ) are somewhat more S1mp1e than those for the G (ro) as shown in the section
Asymptotm Properties, This last feature makes little difference in a numerical treat-
ment, however. More complicated projectors, similar to II, g, are required only when
the recoil of the target must be taken into account (ref. 6).
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The Projector Ta,c

Recall that the subspace & ¢j is spanned by all vectors of the form gzp] (where each
¢ is represented by a function of the variables R r or of rO, T 1) and that it has the
projection operator given in equation (66). Any selected set of states of the nucleus -1
corresponds toa set C of j values. The subspace S¢ is defined to be the direct sum
of the orthogonal subspaces & Cj for all j € C and has the projector

jcC

The generalization of the projector Ha+c
space H, .~ Spanned by 6 A and Se combined.

In discussing the transformation functions for this case, it is convenient to define a
vector Eim In Fl space whose representative gjm(Fl) = (f"llgjm) is the overlap inte-
gral (eq. (7)). The transformation function (eq. (67)) and its adjoint represent, respec-
tively, the operators Kz(mj) =1 | and K2(mj )T =1 The iterates

is the projection operator II A+C for the sub-

ro(gjm rolgjm)°

K'(F, Tg'smm') = (T, ¢ [T |Tg's b o)
K'(:'?(.')’ ;1; ;0" ;1'; J]') = <F0, F]_’ \P] IHA l;o'a ;]_" ll/],>
correspond to the respective operators

K'(m,m') = Esz(mj)Kz(m'j)Jr = lrocmm'

(115)

K'(5,") = By Kpmi) Ky@ni") = Lp 2y |81m) € |

where the constants

constitute a Hermitian M-dimensional matrix. The 'I-{_'(j j') form an N'-dimensional
array of operators in (ro, 1) space where N' is the number of j values contained in
the set C. Note that K'(m, m') =K'(m',m) and K'(] j ) -K'(J' j).
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The required operator products are

OO =2 EJ fdro |r0,¢> >K2(r0’ 0 ' 1 ,m])(ro , 1 ,wldr ndr 1

[
~

Z; | o) €|

M, 00, =2, 5, K (m,m)| O |

el Mg = 223K G, 39w |

The operational rules are conveniently summarized as follows:
0ymt®PPm) = 000 PP
Ham(éll/]-) = [Ko(mi)¢]o,,
[Py = [Ky mi) ol

ey (eWy) = 054523

A basis for 5 is given by the following construction, Consider the set of M
vectors {g ,m C A} in r1 space. From these vectors construct an orthonormal set
W]—. On the aSSumptlon that the g]m are independent, the new set also contains M
menbers and the index 7 can be taken to have thevalues v =1, 2, . . ., M. Now
suppose that the set w. , of which the first M members are the Wi is a complete
orthonormal set for funct1ons of r1 The vectors le)’ v=M =+ 1, are orthogonal
to the original 8:im? since the latter vectors are linear combinations of the ij only.

The vectors sz} that complete the set are not unique, of course. The constants are

defined as

P iy = Eim [Wj2) = (0 W5, (117)
with bm,jﬁ =0 and gjm = E—bm ,i7 W]F' It will be convenient to use the index k to
specify the pairs (j, ¥), which number M = N'M. The constants bm ,iv bm K form an

M XM matrix b. Directly from equation (116), Com' = (bbT) mm’ and from’ equa-
tion (115),
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K'(j, i = 11‘02727' (bTb)j'l;’ "D IWJF)(W] o ,
Thus, in T, 1 Space, E’(j, j') operates only in the subspace spanned by the set {wj ,7}
and transforms to a vector in the subspace spanned by the set {W]--l—’}. Finally, the
desired orthonormal basis vectors spanning § cj are z W, jv.= X w.V:,p..
The projector II A, Cannow be easily constructed by the methods that have been
used previously from the forms

Mp,c =My +Tgps (118)
My ,c =T + Iy po (119)
I,.c =Ry +Rg (120)
where
R,'¢ =3 F "¢,
(121)

and F ', T; are, respectively, vectors in ;0 space and (?0, ry) space. The form
(eq. (118)) leads to the examination of the vectors

Zy,ip= A -Ta)2y, 5

which separate naturally into two subsets, namely,

Zu,iv = Xuiv
(122)

Zu,iv = %u,iv

where
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55 = Wi~ T, 570 129

The subspace 5CpA is spanned by the totality of vectors z 1, jv given by equation (122).
Because of their factors X Xy any two vectors having different values of L are ortho-
gonal. Also, any vector Z .. is orthorgonal to every other vector. Thus, to obtain an

L, jv
orthonormal basis that spans JijA’ construct, for each value of u, an orthonormal set
from the M vectors z =2z . The scaler products
K3V T T, K

<Eu,jvlzu',j'7') - <zu,j?'zu',j'7'> - <HAzu,jv[HAzw,jvm>

= auu'(ajj'ﬁz-—/'oﬁ' - Embm,jv*bm,j'-i;')

= 6,157 - 0], 0 (124)

suggests introducing the Hermitian matrix a = 1— - bTb which is assoc1ated with the
matrix a = 1 - bbl by the relations ab =ba and a -1 1—+bTa b. A unitary

matrix U that diagonalizes a as

.'-
U'au = aD [aK KK '] (125)
gives the orthogonal vectors
Zu.ic = NKZK'UK'KZIJ.K' (126)
It follows from equations (124) and (125) that
<Zui<, '> K A uu Gmc
The normalization of the vectors (eq. (126)) is accomplished by the choice NK = (aTK)'l/ 2_

The set of vectors made up of the totality of the Z Lk and the E“ iv is an ortho-
normal basis for ‘50pA' The projector for this subspace is ’

HCpA=E LE IZ |+E lzu,jﬂﬂzu,jﬁﬂ
- -1 — .
=z Z Z = Iy i ® )iv, ].—.< v—vl + Z4Z lzu jy><zu,j,;| (127)
J? J?v

46



where the relation a1

= U(ED)'IUT has been used, When the second sum on the right

of equation (127) is augmented by the terms required to extend the summation over all

values of the indices, the result is simply HC:

-1 .
Tepa = 1, Z .Z_ o )iz, i @y | - ij'ﬁwlev’*"j)(‘”j'v"”j'u +lc (128

LV LY
Equation (127) can also be written as

where

= 2,25 LG %)W)
and
L'Gi") = 1r0{272'17'|wj7) (5-1 - I35). o (W]-,V,I + 6].]., lrl}

The form (eq. (120)) is obtained from the conditions

Oy (1-T5)3 -1y ) =0

Oa(1-Ty )1 -1, ~)=0
which give

Ry = A'T, (1 - 1)

(128a)

(129)

(130)
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where A' and A’ are, respectively, operators in S and B¢ defined by the relations

(131)
Inserting the forms
At =3 T Lt@m)|¢ e (132)
and
- -—| it
= 2,2, LGNy | (133)
into the defining equations (egs. (131)) yields
Ty =
L'(1r01M - lrobb ) = 1r0 1y (134)
and
250 L' (") [11.06]-,.]-. K(JJ)] =l le, 1N (135)

The solution of equation (134) is L' = 1, a'l, and it is easily verified that the solution
: 0

of equation (135) is given by equation (130). The operators (eqs. (129) and (133)) are
identical, so that HC A = 1- HA)RC. It is evident from equations (128) and (130) that
the vectors w - 5 %‘ + 1, have been eliminated in the final forms of 1I Aic DY the

closure property

COUPLED EQUATIONS AND THEIR BOUNDARY CONDITIONS
Asymptotic Properties
The operators developed in the preceding sections act on the total scattering state

¥ to produce components whose coordinate representations yield asymptotically the
transition amplitudes for the reaction in the various channels. The projector II om? for

48



example, operates on ¥ to produce a component Um(f" 0)¢m, given by equation (6);
which at large values of Ty has the behavior of the am term on the right of equation (1),
if channel am is open. Of course, Um(ro) becomes vanishing for closed channels.
Similarly, the component. V n(R)(x:,lx)n projected out by Hﬁn has the asymptotic behavior
given by equation (2). The corresponding properties of the components produced by the
projectors for the redefined channel subspaces are illustrated by the examples of HB’n

and HE » Which are defined by equations (43) and (99), respectively.
Write
IIan\Ir = Yn(XlP)n
(136)
Oz, ¥ =Y,0m),
where
Y, (T = (T, (), | ®)
and

Y, (tg) = (Tg, (m), | ®

The integrations in the scalar products can be performed with the volume element
dr = d?o dr df{, in which case the suitable wave function representative is ( ;0, 1_': gl\Ir).
The asymptotic behavior inthe B channels of the wave function based on the coordinate
pair (FO,?) is obtained from the expressions

R = r2-r _-r+lr2 =T -lr -r+0r_
0 0 4 0 5 0

~ 1 - 1 -
R= —I\r,-~r
R ( 0 2 >
which show that, for large separations in the £ channel,

- 14. - A»A
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From equation (2),

N°
- - a - - - A i T
<r0; r, ﬂ ) E (27")-3/2 Z ﬂn(r(), I‘)1,DJ( £ )ABn(kO’ ro) ri e1Kn 0 (137)
0

n=0

where nn(;o,-f) is given by equation (98). The asymptotic behavior of Yn(i'"O) and
?H(FO) follows directly:

N°
_ oA - ik_,r (138)
Y 7 2m) 2 § D E A g e T) = & 0 0
r
0
n'=0
No »
—_ -3 ~ POEEPN 1g_,I
T,y ~ (@n) /2 % s CoMn g Fg) = e 0 (139)
0
n'=0
The functions
—_ I - —iKn';O " T g ==
vnn,(ro) = ij, xi*(r')exp ——2———— Xi'(r') dr

are closely related to the functions vnn,(f'o) given by equation (100). Equation (137)
shows that, in terms of the coordinate pair (1"'0, T), the wave function at large separations
in the B channels is a sum of functions that are not orthogonal on the scalar product
over the internal variables of the B fragments. Each term in the sum contributes to the
projection in a given redefined S8 channel. The phase factor in T which multiplies a
spherical wave on the right of equation (137), depends on the coordinate T as well as
;O and shows explicitly the nonuniform nature of the asymptotic motion inthe g chan-
nels when described by the coordinate pair (F, 0,'1’).

The projection operator (eq. (66)) produces the component

I ¥ = Wiy (140)
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where W]. is a vector in (ﬁ, r ) space, or equivalently, in (;0, ;1) space. The expan-
sion

Wi®, 1) = (R, T |[W)) = 32, (r) (141)

is convenient for discussing the asymptotic properties of Wj (ﬁ, 1-‘.) The sum on the right
of equation (141) includes the continuum states of 2 as well as the bound states. At
large separations in the B channels, that is, for large R and r < Rp, the discrete
terms in the sum have the asymptotic behavior given by equation (2). In contrast to the
components (eq. (136)), which refer to specific B channels, the component (eq. (140))
does not vanish at asymptotic values of the variables in the open channel om. This
asymptotic contribution in channel om corresponds to the projection of ¢m on z[/j and
is described by a superposition of continuum terms in the sum (eq. (141)). The contri-
bution is missing in the term II ApC‘I' from equation (119), and therefore this term does
not yield the complete asymptotic behavior in the a channels. K the three particle
channels (n, p, and #-1) are open, there will be additional nonvanishing continuum com-
ponents ai(ﬁ), at large values of R, corresponding to the appropriate continuum states
of 2.

The coupled equations describing the reaction can be formulated in terms of the
components Foa and G of equation (81), F. m and (_}n of equation (103), or F.' and
Tj of equation (121). The asymptotic properties of the component functions provide the
corresponding boundary conditions that define the desired solutions of the system of
equations. From the conditions analogous to equations (10) and (11), namely,

Tym(t - Tp,p) =0
(142)
Hﬁvn(l - HA+B') =0

are obtained, with the help of the operator rules (eq. (87)),
Um = Fm + EnJl(mn)Gn

Y =z J,n)F_+G,
From the property (eq. (48)) on the matrix elements (eq. (83)), it follows that

Fm(f"o) - Um(Fo) and Gn(f"o) - Yn(ro). The functions Fm(ro) for the o channels have
the usual outgoing and incident wave behavior given by equation (1). However, the func-
tions for the B channels require that the boundary condition of outgoing waves only be
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imposed on appropriate linear combinations, namely,

N° _
- - _ “ ik r
g [leg] GGy ~ @) 3/ 28 kg T L e PO (143)
nn' Ty
n'=0
When the equations analogous to equation (142) for II A+B (with HE - replacing II B'n)

are employed, and the vanishing of the matrix elements (eq. (104)) at large r, is taken
into account,

0

F (x, 0~ Uy, (E’O)

G~ > [76] | Tl
n'=0 .

. A ik r
- (27r)'3/2ABn(k0, ry) 1 gm0

r
0

Hence, the outgoing wave boundary condition applies directly to the functions En(?o).
The analogs of equation (142) for 1I ALC (with 11 ¢j appearing in place of HB'n) give

Up = Fp' + Z;Kpmi)T;

= By + 34(00 | Tj) (144)

W. = ZmF

i (145)

m'gjm + Tj

Asymptotically in the 8 channels, both ry and ry become large, and equation (145)
shows that

-

Tj(ro,rl) g Wj(ro,rl) (146)

In the o channels, however, r; remains bounded as ro becomes large, and
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Fm'(ro) + (rQ, gjmlTj) P Um(ro)

szmv(FO)gjm(Fl)+ Tj(i’o, r) = wj(?o, r)

Coupled Equations

In the method given by Feshbach (ref. 1), the Schrodinger equation (E -s#)¥ =0
yields an equation for P¥

(E - H)PT = 0 (147)

in which the effective Hamiltonian is

H - #pp + % %op 4

1
- %g

Here, P is the open channel projection operator, Q =1 - P, and '*i’Q = P#Q, and so
forth. In the case of the pickup reaction, P can be chosen as one of the projectors in
the section MULTICHANNEL PROJECTION OPERATORS, where all the open channels
are included in the sets A and B. If there are open three-particle channels, the pro-
jector II ALC would be required.

The projector II A+B' in the form o£ equation (82), for example, leads to a set of
coupled equations for the functions Fm(ro) and Gn(ro). Operating on equation (147)
with 1II om and HB'n’ respectively, gives

No ~N
E|F_+ 2, J,0)G,| = (¢, |H|R, ¥ + Ry, ®
n=0
O - (149)
E|Y. 3,m)F  +G | =), |HIR, ¥ + Ry,
m=0

The boundary conditions for the F m 3are given by equation (1) and for the G n by equa-
tion (143). The form of II A4p' Biven by equations (78) and (94) produces channel com-
ponents which are all orthogonal to one another. The resulting coupled equations are

analogous to equation (149), but they have a more convenient form with only one channel
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function appearing on the left side of each equation. On the other hand, the unitary
matrix Un,n(i"o) in equation (92) must be evaluated in this approach.

An appropriate separation of the total Hamiltonian is associated with each type of
channel. The separation corresponding to the @ channelsis #=T ot x"! +V o where
V, 1is the interaction between the « fragments, T isthe sum of their center-of-mass
kinetic energies, and da is the sum of their internal Hamiltonians (with each internal
Hamiltonian referred to its fragment's own center-of-mass system). There is a similar
resolution for the B channels. Recall that the projector II A4B? is based on the choice
of natural coordinates for the a channels, Conseq_liently, the usual form of Ta suffices
for the partial wave expansion of the functions F (ro). The kinetic energy operator T g
however, must be expressed in a form suitable to the choice of coordinates (1_"0, r) in the
B channels. Since the core nucleus #-1 is infinitely massive, the reference frame
provided by the fixed core itself has been used. In this reference frame, TB =(1/2 MD)_P%,
where P, is the total momentum of the fragment 2, and Mpy =M + Mp is its mass.
For simplicitly, the masses of n and p have been taken to be the same, namely M, so
that their total mass is Mp = 2M and their reduced mass is u = (1/2)M. The kinetic
energy T, is the same as that of a point mass MD whose velocity is that of the center

of mass of fragment 2. Thus, the following equation can be written:

1 dR 1 d> d 1=
T,==Mp|[—)} ==M{|[—rp-— =T (150)
B2D(>2D<dt0dt2>
The form (eq. (150)) gives the transformation of the kinetic energy from a reference
frame moving with velocity (dI_"O/ dt), in which particle n is at rest, to the reference
frame of the fixed core. The term

2
als
1 2
Inm
2 D\ gt

is the lii.netic energy of the point mass MD in the moving reference frame. The quan-
tities P = Mn(dfo/dt) and p = p(dr/dt) are the momentum of particle n in the frame
of the fixed core and in the center-of-mass system of fragment 2, respectively. The
kinetic energy operator becomes

5 -\2
TB:lMD 2.2 omiE -p)?
2 M 20
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The momentum operators have the coordinate representations -ﬁn - -ih Vr and

p — -ifi V.. Finally, 0
1158 3 [o 1 =2 .2 2 _2
TB=_ - — (=1 +—=— L%+ 21 Ve = V.-H"V
M| r, or, \or 2 0 r
0 0 0 ry

where T = ;0 X -ﬁn' The terms arising from T, in the coupled equations (egs. (149))
are much less complicated than the corresponding contribution in the coupled equations
given by 1I A+B

Consider now a selected set of open o and B channels, for which an appropriate
projector is Iy of the kind given in the section MULTICHANNEL PROJECTION
OPERATORS, for example. Then, an open-channel subspace # of the class that has
been used here can be resolved into the direct sum of By the projective space of Uprs
and of S the largest orthogonal subspace in &. Thus,

? =‘5M GLSKT
P=HM+HK > (151)
HMIIK=0 )

With the same procedure as was used in reference 7 for the case of a selected set of

inelastic channels, the generalized potential for the projection HM\II can be derived.

The steps involved are exactly analogous to those which lead from equation (40) to

equation (45) in reference 7. In the present case, start with equation (151) and replace

HI by HM in the subsequent equations of reference 7. In terms of the generalized

potential, the components of Iy ¥ satisfy a set of coupled equations. Appropriate energy

averaging of the transition amplitude leads to an expression for the generalized optical

potential that describes the direct reaction in the selected channels. Again, the pro-

cedure directly parallels the derivation in reference 7 for the case of inelastic scattering.
The optical model Hamiltonian can be written

hyp = h(+) + Uoy (152)

The compound-nucleus term UoN gives the energy-averaged resonance contribution to
the transition amplitude. The scattering eigenstate 9("') of hM yields the energy-
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averaged transition amplitudes in the selected channels. Necessary conditions are

11,6 - o) sy

HMhM = hMHM = hM

X Oy is a projector of the type II A+BY coupled equations for II A+B'9(+) follow in the
same way as equation (149), except that hM appears in place of H, and II A4+B' DOW
refers to a selected set of open @ and B8 channels. I a phenomenological optical poten-
tial is associated with the exact potential given by hy,, the condition (eq. (153)) can be
taken to hold for the solution 5('*') given by the empirical generalized potential, that is,
ﬁM§(+) = '9_(+). Here, ﬁM is the projector obtained by the replacement of the exact
i—nternal states in HM by the approximate states given by the model. The appropriate
HM is employed to obtain a set of coupled equations like equation (149) for the compo-
nents of °9'(+). The phenomenological potential consists of the various coefficient func-
tions that enter in the coupled equations; it corresponds to the matrix elements of the
associated hM taken between the internal states of the channels included in l'IM. The
potential is determined by adjustment to produce the optimum fit to the experimental
data.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 19, 1968,
129-02-07-07-22,
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APPENDIX - SYMBOLS

selected set of @ channels
set of all open « channels
transition amplitude for channel am

transition amplitude for channel gn

nucleus consisting of particle p bound to the core
heavy core nucleus

matrix equal to 1y, - bb!
value of ;0

matrix equal to lﬁ - bTb
diagonalized form of matrix &
eigenvalue of matrix a
selected set of B channels
matrix equal to 1M - Av'l N
set of all open B channels
matrix equal to lN - v'l N
matrix whose elements are bm

, K

equal to (gjm le v) = bm, p

value of R

selected set of j values

matrix equal to 1 B'1
To

matrix element of C

matrix equal to 1r (1/§)'1

matrix element of C

equal to Ej (ng ,gjm')

equal to [(g Ig)]l/2
subscript designating nucleus 2

bound system of particles n and p
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(<A

dv
dr
dr

o

e P T
BC

=]

B

Q Mo Ho

- pnf

Iy

T
lN -h'h
drodr

drgdr, d
dp, dry dZ

total energy

vector in
vector in
vector in
vector in
vector in
vector in
vector in
vector in
vector in

vector in

—

R space
r, Space
r, space
r, space
r, space
ry space
r, Space
R space
r, Space

r, Space

abbreviated rotation for 8im (r. 1)
S B E, @, )
effective Hamiltonian

total Hamiltonian of system

PAQ

direct sum of channel subspaces 5 mcCA

om’
direct sum of all open channel subspaces & om
direct sum of channel subspaces H B> B CB
direct sum of all open channel subspaces 5Bn

direct sum of channel subspaces JjB, ncCB

n,
space spanned by all subspaces JjBn’ ncCB
direct sum of channel subspaces & cj? jccC

space spanned by & A and Spr combined



SBpA

'5A+§

a'pB
ﬁBpa’

largest subspace of S that is orthogonal to A

largest subspace of & A that is orthogonal to Sge

space spanned by & A and Gy combined

largest subspace of oy that is orthogonal to H A

largest subspace of & A that is orthogonal to 65

space spanned by & A and Sc combined

largest subspace of Gl that is orthogonal to s A

largest subspace of & A that is orthogonal to Sc

the largest subspace of £ that is orthogonal to Sn

the projective space of HM

abbreviated notation for s am

abbreviated notation for § o'm

channel subspace spanned by all states representable by p(IT 0)¢ m(f" 1,_{)
channel subspace spanned by all states representable by s(ﬁ)q&m (r 1> £)
abbreviated notation for & n

channel subspace spanned by all states representable by o(R)(xzp)n
channel subspace spanned by all states representable by t(;o)xi(-f )zpj (Ig’)
subspace spanned by all vectors representable by p(f"o)(mt/) h

channel subspace spanned by all states representable by g(ﬁ, ;)”Dj (-é)
abbreviated notation for § cj

space spanned by & o and & 8 combined

largest subspace of 5 8 that is orthogonal to & a

largest subspace of & o that is orthogonal to $ 8

space spanned by & a and S g combined

largest subspace of g that is orthogonal to H o

largest subspace of & o that is orthogonal to H g

space spanned by & a' and & 8 combined

largest subspace of & o' that is orthogonal to & 8

largest subspace of & B that is orthogonal to & a'
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Basc
Sapc
‘5cpa

J1@0 To")

J1 (g Tges m, 1)
71

Jl(mn)

J(m, m*)

J(n,n')

J1
A2
i
K
K

60

space spanned by & o and & c combined
largest subspace of H o that is orthogonal to & c

‘largest subspace of & c that is orthogonal to & o

abbreviated notation for hmn(l-: 0)
S O E G E - )

matrix whose elements are h ()
diagonalized form of matrix h(f"o)
an eigenvalue of h

the exact optical model Hamiltonian

direct reaction term of optical model Hamiltonian hM

T
Lh

I
(R, R, xy)
abbreviated notation for I1,(R,R")
specifies state of nucleus 2

T
7191

T

J1'91
abbreviated notation for J 1(1_" 0 1-"0'; m, n)
(FO’ ¢m IFO', (le)n)
matrix of array J 1(mn)

array of operators represented in FO space by J 1(1"'0, ;05 m,n)
; Jl(m) n)JlT(n, m')

%1: JlT (n, m)J;(m,n')
Jacobian determinant
Jacobian determinant
specifies state of nucleus -1
KK, T

K, 'k,




2 8 8 B
o

=]

=l

= 2 =
)

(To ¢|R, xy), channel transformation function based on natural
coordinates in both channels

1-
T

Ky Ky

<F0’ ¢m IF()', F]_,, #/]>
array of operators represented by Kz(f"o; ?0', 1"’1' ; mj)
> KymjKy(my)!

]
3 Ky(mi) Ky(mi")

m
sum of internal Hamiltonians of a fragments
wave vector of incident plane wave in channel «0

wave number for relative motion of free fragments in channel am

To

1
I‘O .

(1g - )

@ -kt

X
Pn

- k)1

r
-1
a
Lo
array of operators in FO space that comprises L
an array of operators in (r, o r. ;) space

=1
(1. 1. -KY
1‘0 I‘l

Jafgx(R - (1/2)Fx@)

value of M  and Mp when they are equal

number of channels in the selected set A of channels
N'M '
mass of nucleus D

mass of particle n

mass of particle p

number of open « channels is MO 41
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g o =
L]

o
g
8

" O
B

ko]
o e g% R _U;Ul b"Ui

| O
)

o
)

[+
[

-1/2
1-21"% /

specifies state of nucleus &

- -1/2
[1- wene®)|?]
number of channels in selected set B of 8 channels

number of open S channels is NO +1

p-1/2
(1- co)

number of j values in set C

[1-n @)Y
~ 1-1/2
[Vn(ro)] /
@) Y2
specifies pair (i,j)

incident particle in pickup reaction

[t - m@) g2

d'llro
a! I,
matrix elements of O

matrix elements of O

projection operator that selects all open channels

momentum of particle n in frame of fixed core

total momentum of fragment 2 in frame of fixed core

open channel subspace

subspace of £ corresponding to Hilbert space of the model problem
particle bound to core -1 in nucleus o

momentum of particle n in center-of-mass system of fragment %

1-P

My - g
counterpart of QS in model problem



T oW le

_—t S "‘léﬂ o’:U :Ew UT’:IU BEUIU_;U DEUZ;U

o' ¢
<l

)—] wn
)]
=

H =3 4
Q—th

closed channel subspace, compliment of & in total Hilbert space

center-of-mass position vector of 2

unit vector in direction of R

idempotent part of

idempotent part of

idempotent part of 1I

idempotent part of
idempotent part of
idempotent part of
idempotent part of

idempotent part of

effective radius of nucles

idempotent part of
idempotent part of
idempotent part of
idempotent part of
idempotent part of

idempotent part of

n with property R a\If =u¢p

a+fB
Ha+B with property RB\If = yxy
with property R a\If =F¢

a+f'
Ha+B' with property RB,\II = Gyy
Ha'+ﬁ with property Ra,\If =F¢
Ha'+B with property RB\II = Gy
I with property R a,\If =F'¢

II Qe with property R C\Ir =Ty
S

II A+B' with property RA\II = ZFm¢m

I, e With property Rg,¥ = IG (x¥),

I, .5 Wwith property Ry¥=2F ¢,

I ALE with property RE\II = EC_‘rn(n Il/)n

HA+C with property RA'\If = EFm'q)m

I A+C with property Rclll = ETj"Uj

effective radius of nucleus 2

ro-rl

position vector of particle n

unit vector in direction of Ty

position vector of particle p

position vectors of particles in core nucleus of-1

state of motion for mass centers of o fragments in terms of coordinate 51

a vector in (f"o, 1"’1) space

sum of center-of-mass kinetic energies of o« fragments

sum of center-~of-mass kinetic energies of 8 fragments

vector in (T, o ry) space



t(5y)
U, ()

u, (; 0)

UcN
v, (R)

Vk(ﬁ)
Wl(f"l)
WJ%)

wﬁ}-(r 1)

—

state of motion for mass centers of B fragments in terms of coordinate 52
unitary matrix

(o) by |2

vector in FO space

eigenfunction of K

compound-nucleus contribution to optical model Hamiltonian hM
(R, ), | ®)

iteraction between o fragments

vector in R space

eigenfunction of K

(FO’,FI',wj [ %)

(1/c,)g(T)

complete orthonormal set for functions of r. 1

an orthonormal set constructed irom the set 8im> ™ CA

a complete orthonormal set whose first M members are Wjﬁ(;l)

complete orthonormal set for functions of 1_"0

& ¢
m(b )(1 - L)
5, [2,)

Nn(:E:O) 2 “’n'n(;())l ;0, (nd/)nv>
n

(T W)y [
(Tg, (), | )
0, XY

n(@)(1 - Iy,
o, (x¥),
(-,
QXY




VX Mk(l - Ha)VXXIP

zu-;c NKEK'UK'KEHK'

Zﬁv X #WV

Euv (1-1 a)z iy

%y, jv XY

Zy,iv (1-1p)2 ), 50

a designates particles of certain kind of channel
am specifies channel of o type

B designates particles of certain kind of channel
Bn specifies channel of 3 type

Amno) AF '8y, *(Fy Iy 00, T - Ty)

6a normalized eigenvector of J(m,m') and J(n,n')
db normalized eigenvector of I and I

¢ vector in (R,T) space

T T)  exp(-iyTo - /2 (F)

9(;' O) unitary matrix that diagonalizes v(;o)

9(+) scattering eigenstate of generalized optical potential hM

§(+) scattering eigenstate of phenomenological potential associated with hM
K index that specifies pair (j, V)

K constant

Ky wave number for relative motion of free fragments in channel fn
A L{¢)¢|

I\ Lixy) ey |

Ao O|o)s|

Ao Olxy) v

Ag m?1.1,,

Ry m? 1,10 8

A L' [¢)e]

Iy L'yl



lgipA

7.)

Em, m'cmm' ’¢m)(¢m' ,
Zn, nConnt W) (¥ |
eigenvalue of K and K
reduced mass of n and p
matrix elements of p.(;o)

5jj' fexp[iro . ZF'(Kn - Kn')/z] dl—‘b'xi*(l_"')xiv(f'.')

4 f exp(-ix T+ T/ 2 * @ )x; () af

matrix whose elements are v, (f'o)

diagonalized form of matrix v(f'o)

index which can take values 1, 2, . . ., M

index whose values are integers greater than or equal to (M + 1)
represents set of coordinates Ty, . . ., Ty
projection operator onto 5,
projection operator onto deo
projection operator onto -5B
projection operator onto '58'
projection operator onto \55—
projection operator onto ‘5130
projection operator onto lﬁc
projection operator onto 8, +B!
projector onto '5B'pA
projector onto ﬁApB'
projector onto 8, B

projector onto '5§pA

projector ‘5Ap§

projector onto ‘5A +C

projector onto -fpr

projector orio JjApC

projection operator onto JjK



=
=

= B3 =9 o
g S e

H =23 = 4
5 B

=
™

=]
™
5 B

o

(¢
Cds

a+

™
(=]
R

app

a+8'

H A A H3dA =2 8 =9 9

B'pa
app'

2

=/ =2 B8 A
2
e
& ®

Bpa'
a+C
apc

cpa

I

4 D

—

©
—
=
o]
"~

projection operator for a selected set of open channels
counterpart of HM in model problem

projector onto largest subspace of ¢ that is orthogonal to JjAo
projector onto largest subspace of £ that is orthogonal to ‘580
alternative projection operator to HM

counterpart of IIS in model problem

abbreviated notation for II o

projection operator on 5 am

projection operator onto & a'm

abbreviated notation for HBn

projection operator onto & 8n

projection operator onto &£ g

abbreviated notation for II cj
projector onto 5 Cj
projector onto H a+B
projector onto @B pa
projector onto S app
projector onto Jja_l_ﬁ,
projector onto ‘53'pa
projector onto 5ap[3'
projector onto H a'+B
projector onto ‘5a'pB
projector onto ‘5,Bpa'
projector onto

J‘3(1+C

projector onto H ape

projector onto H cpa

coordinate for « channels, in addition to T,
coordinate for $ channels, in addition to r
common coordinate for both @ and 8 channels

state of motion for mass centers of a fragments
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state of motion for mass centers of 8 fragments
complete orthonormal set for functions of R

th

wave function for m excited state of nucleus

abbreviated notation for ¢ (r. 1 %)
N(¢ - g¥)

N(wyy - ¢ ¢)

Wj?"bj - z;mbm,j'ﬁqsm
wave function for ith excited state of particle 2
abbreviated notation for xi(x-" )

Xi¥;

total scattering state

th

wave function for j excited state of nucleus &/-1

abbreviated notation for X ( E)
anannrn[ (XLU)n. = Emhmn' ¢m]
n(xy - ho)

m{ ¢ - (1/8) *xy]

(Xllj)n - Emhmnqu

Mathematical notations:

68

Planck's constant divided by 27
Kronecker delta
gradient operator with respect to coordinate r

scalar product over a complete set of variables for system

scalar product over a set of variables that is not a complete set for system

unit vector in T space
M-dimensional unit matrix
direct sum

complex conjugate
Hermitian adjoint

is contained in



M
{x,}

intersection

th t X
e se u
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